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Abstract
A selected intersubband transition in the asymmetric quantum well is
theoretically proposed by using the superposition of two identical time delayed
and phase shifted broadband pulses. Three conduction subbands in the
semiconductor quantum well structure are optically coupled with the ultrafast
infrared pulses. By adjusting the delay between these two pulses, the carriers
at ground level can be selectively pumped to one of the upper levels, while the
other upper level remains unoccupied. Thus selective transitions in the three
level model can be manipulated by optical interference. At the same time,
terahertz radiation will be emitted by coherent controlled charge oscillations.
The phase and amplitude of THz radiation is found to be sensitive to the optical
interference of the coupling pulses.

1. Introduction

Interaction between multilevel systems and the multifrequency laser fields have been associated
with many complex nonlinear behaviours [1–7]. Investigations of the nonequilibrium dynamics
of elementary excitations in bulk and nanostructured semiconductors via femtosecond infrared
spectroscopy have been reviewed by Elsaesser et al [5]. Schemes for lasing without inversion,
state trapping and selective transition in the atomic systems have been proposed based on the
quantum coherence between atomic levels [4, 8, 9]. In semiconductors, the dephasing time
for coherent carriers, with a typical value below 1 ps, is much shorter than that of the atoms
or molecules. Due to the application of femtosecond lasers, optically induced coherent carrier
phenomena in semiconductor nanostructures, such as the coherent control and enhancement
of the refractive index in an asymmetric double quantum well, charge oscillations in a double
quantum well, and Bloch oscillations in superlattices have been proposed and observed [10–
18]. Coherence control implies that not only the amplitude but also the phase conditions
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become important for the characteristics of the systems. The coherent control of excitons
in a quantum well with a pair of phase locked ultrashort pulses was displayed by Heberle
et al [19, 20]. The intersubband transition in semiconductor nanostructures has played an
important role in mid-to far-infrared optoelectronic devices, such as the quantum well infrared
photodetector and quantum cascade lasers [21]. Efforts have been made to realize mid-to
far-infrared emission from an optically pumped infrared intersubband laser [22, 23]. Methods
to control the subband population have an important meaning for these applications. A key
challenge and prerequisite in the design of a laser based on intersubband transitions is to obtain
population inversion. If we want mid-to far-infrared light to be generated from semiconductor
nanostructures by optical pumping, we must have a population inversion between the two
lasing subbands. Electrons in the ground subband must be selectively pumped to the upper
lasing level by the ultrafast pumping pulse. This selective pumping can be accomplished with
a spectrally narrow tunable excitation source. But when the optical pumping pulse is ultrafast,
or in other words, spectrally wide, this is not easy, especially when the upper two subbands
have a very small energy difference. An ultrafast optical pulse cannot distinguish them when
pumping electrons from the ground state. Electrons can be pumped to either of the upper
subbands simultaneously. In the following, a scheme for coherent control of any selective
subband population filling by optical injection is presented. Any desired subband population
can be realized by carefully adjusting the parameters through this scheme.

2. Theoretical model

In this paper, we demonstrate our proposal for overcoming the problem of selective
intersubband transition in an asymmetric quantum well structure based on the interference
of light, using a superposition of two identical, time delayed and phase shifted optical pulses.
As an example, we consider an asymmetric quantum well, as shown in figure 1. Only the
lowest three conduction subbands are taken into account in our calculation. Carriers in the
ground level can transit to the upper electron subbands, subband 2 or subband 3, by absorbing
a photon. If a laser has a short pulsewidth, the corresponding spectral width will expand.
For example, the pulsewidth of a 1 ps laser pulse has at least 15 cm−1 spectral width. These
spectral components of the pulse can interact with the nonlinear optical system. Thus, when
an ultrafast pulse (also a broadband pulse from the spectrum’s point of view) is imposed on
this system, the electrons in the ground level can be pumped to either of the upper subbands
according to their spectrum intensity. If we carefully adjust the time delay and phase shift
of the two identical ultrafast pulses, we can bring one of the intersubband transitions into the
‘hole’ of the interference pattern and keep it unexcited. The double intersubband transitions
can be selectively controlled on the femtosecond timescale.

We consider a superposition of two identical time delayed and phase shifted ultrafast
pulses. The total light field has the form

E�(t) = E1(t) + E2(t) = 1
2 A0(t) exp[iω0t] + 1

2 A0(t) exp[−iω0t]

+ 1
2 A0(t −�τ) exp[iω0(t −�τ) + i�ψ]

+ 1
2 A0(t −�τ) exp[−iω0(t −�τ)− i�ψ], (1)

where E�(t) is the total light field, A0(t) is the amplitude of the ultrafast pulse, ω0 is the
frequency of the pulse, and �τ is the time delay, and �ψ the phase shift, of the two pulses.
In our case, A0(t) has a Gaussian envelope for simplicity.

In order to get the spectrum, we have to rely on its Fourier transform. Here the Fourier
transform properties of time delay and frequency shifting are needed. After performing a
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Figure 1. The superposition of
two identical time delayed and phase
shifted ultrashort pulses, the potential
profile of the nanostructure and the
lowest three subband wavefunctions
of the asymmetric quantum well
structure. Selective transitions are
induced by the interference of these
two pulses. There are holes in the
spectrum after the interference. If one
of the transitions is placed in the hole,
the excitation will be suppressed.

Fourier transform we can get the spectrum function as

F�(ω) = 1
2 F0(ω + ω0) + 1

2 F0(ω − ω0) + 1
2 F0(ω + ω0)e

iω�τ+i�ψ + 1
2 F0(ω − ω0)e

iω�τ−i�ψ

= F0(ω + ω0) cos((ω�t +�ψ)/2)ei(ω�τ+�ψ)/2

+ F0(ω − ω0) cos((ω�τ −�ψ)/2)ei(ω�τ−�ψ)/2, (2)

where F0(ω) is the Fourier spectrum of the amplitude of the ultrafast pulse A0(t) and F�(ω)
is the Fourier spectrum of the total light field. Equation (2) is the general relation of F�(ω).

Only the spectrum part where the frequency is around ω0 plays an important role in the
pumping of electrons. The resulting spectrum is

|F�(ω)| � |F0(ω − ω0)| cos((ω�τ −�ψ)/2). (3)

Thus the spectrum of the combined field will be sinusoidally modulated by the optical
interference. When the phase of the modulation satisfies

ω�τ −�ψ = π(2k + 1), (4)

where k = 0,±1, . . . is any integer, the intensity of the spectral components at frequency
ωk = [π(2k + 1) + �ψ]/�τ equals zero. This interference is schematically depicted in
figure 1 to give a physical picture. The interval between the two zero spectrum intensity
frequencies can be adjusted by the time delay �τ , while the variation of the phase shift �ψ
translates the whole interference structure along the frequency axis.

When an ultrafast pulse possesses a large bandwidth and the energy split of the upper
two subbands is small enough, it is possible that both the intersubband transitions from the
ground subband to subband 2 and subband 3 will be coupled to this pulse. If we choose the
frequency to be one of the double intersubband transitions belonging to the zero spectrum
intensity frequencies by varying the phase conditions, then this particular transition will be
suppressed. In other words, the carriers in the ground level will not be allowed to be pumped
to this subband. At the same time, the other intersubband transition can be achieved if the
frequency does not fall into the ‘holes’ in the interference spectrum. Thus a selective transition
can be achieved. For example, if the time delay is fixed and the phase shift condition is set to
be�ψ = π +ω21�τ , the transition from the ground subband to subband 2 will be suppressed.
This selectivity is valid for the transition between subband 1 and subband 3 by replacing ω21

by ω31 in the preceding relation.
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The microscopic analysis of coherent effects in photoexcited semiconductors is based on
the semiconductor Bloch equations within the three subband model [24–26]. In the second
quantization, the Hamiltonian of this system in the absence of any infrared fields can be written
as

H = H0 + HCoul =
∑

µ

εµ,ka†
µ,kaµ,k + 1

2

∑

µνµ′ν′kk′q
V µνν′µ′

q a†
µ,k+q a†

ν,k′−qaν′,k′ aµ,k, (5)

where H0 is the kinetic term, HCoul represents the Coulomb interaction, εµ is the electron
energy, and a†

µ,k , aµ,k are the electron creation and electron annihilation operator of the µth

subband with a wavevector k [24, 25, 27]. V µµ′νν′
k is the Coulomb matrix element. Under the

dipole approximation, the light material interaction Hamiltonian has the form

HI = −
∑

µ,µ′,k
E(t)(dµ,µ′,ka†

µ,kaµ′,k + h.c.) = −
∑

µ,µ′,k
(A0(t) cos(ω0t)

+ A0(t −�τ) cos(ω0(t −�τ) +�ψ))(dµ,µ′,ka†
µ,kaµ′,k + h.c.) (6)

where dµ,µ′,k is the optical dipole matrix element. Since the splittings of the subbands are
small (tens of meV), we have avoided the rotating wave approximation in the interaction
Hamiltonian [11, 28, 29]. The electron–electron Coulomb interaction is treated within the
screened Hartree–Fock approximation. The set of equations of motion for the electrons in the
multisubband system can be directly deduced from Heisenberg’s equation of motion with a
Hamiltonian including many-body effects and Coulomb interaction [24, 25]. The other various
scattering and dephasing mechanisms, such as electron–phonon scattering or scattering by
impurities, will be taken into account by introducing phenomenological decay and dephasing
constants for simplicity [24, 25].

The quantities of interest are the electron distribution nµ,k , and the intersubband
polarization pµν,k . These can be defined as

nµ,k = 〈a†
µ,kaµ,k〉 (7)

pµν,k = 〈a†
ν,kaµ,k〉, (8)

where 〈F〉 is the expectation value of operator F . The expectation value nµ,k is simply the
population of the electrons at wavevector k in the µth subband, and pµν,k is related to the
polarization of the medium, which becomes macroscopic because of the applied external field.

Based on these definitions and the Hamiltonian given above, we can derive the equation
of motion for electron distribution and intersubband polarization [24, 25]. The starting point
is the Heisenberg equation of motion:

ih̄
∂

∂ t
Ô = [Ô(t), H + HI ]. (9)

Insert the two operator products given in equations (7) and (8) into equation (9). By using
the commutation relations of the Fermion operators, employing the screened Hartree–Fock
approximation by using a time-dependent static screening [24], and after a lengthy derivation,
the final equation of motion can be written as

ih̄
∂

∂ t
n1,k = ih̄

∂n1,k

∂ t

∣∣∣∣
Col

+2i · Im(µ21 E(t)p∗
21,k) + 2i · Im(µ31 E(t)p∗

31,k)

−
∑

k′ �=k

V 2112
|k−k′ |(p21,k p∗

21,k′ − p∗
21,k p21,k′)

−
∑

k′ �=k

V 3113
|k−k′ |(p31,k p∗

31,k′ − p∗
31,k p31,k′) (10)
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ih̄
∂

∂ t
n2,k = ih̄

∂n2,k

∂ t

∣∣∣∣
Col

−2i · Im(µ21 E(t)p∗
21,k) + 2i · Im(µ32 E(t)p∗

32,k)

+
∑

k′ �=k

V 2112
|k−k′ |(p21,k p∗

21,k′ − p∗
21,k p21,k′)

−
∑

k′ �=k

V 3223
|k−k′ |(p32,k p∗

32,k′ − p∗
32,k p32,k′) (11)

ih̄
∂

∂ t
n3,k = ih̄

∂n3,k

∂ t

∣∣∣∣
Col

−2i · Im(µ31 E(t)p∗
31,k)− 2i · Im(µ32 E(t)p∗

32,k)

−
∑

k′ �=k

V 3113
|k−k′ |(p31,k′ p∗

31,k − p∗
31,k′ p31,k′ )

−
∑

k′ �=k

V 3223
|k−k′ |(p32,k p∗

32,k′ − p∗
32,k p32,k′ ) (12)

ih̄
∂

∂ t
p21,k = (ε2,k − ε1,k)p21,k − (µ21 E(t)(n1,k − n2,k) + µ31,k E(t)p∗

32,k + µ32 E(t)p31,k)

+
∑

k′ �=k

V 1111
|k−k′ |n1,k′ p21,k −

∑

k′ �=k

V 2222
|k−k′ |n2,k′ p21,k

−
∑

k′ �=k

V 2112
|k−k′ |n1,k p21,k′ +

∑

k′ �=k

V 2112
|k−k′ |n2,k p21,k′

+
∑

k′ �=k

V 3113
|k−k′ | p∗

32,k p31,k′ −
∑

k′ �=k

V 3223
|k−k′ | p∗

32,k′ p31,k + ih̄
∂p21,k

∂ t

∣∣∣∣
Col

(13)

ih̄
∂

∂ t
p32,k = (ε3,k − ε2,k)p32,k − (−µ∗

21 E∗(t)p31,k + µ31,k E(t)p∗
21,k + µ32 E(t)(n2,k − n3,k))

+
∑

k′ �=k

V 2222
|k−k′ |n2,k′ p32,k −

∑

k′ �=k

V 3333
|k−k′ |n3,k′ p32,k

+
∑

k′ �=k

V 2112
|k−k′ | p31,k p∗

21,k′ −
∑

k′ �=k

V 3113
|k−k′ | p∗

21,k p31,k′

−
∑

k′ �=k

V 3223
|k−k′ | p32,k′ n2,k +

∑

k′ �=k

V 3223
|k−k′ | p

∗
32,k′ n3,k + ih̄

∂p32,k

∂ t

∣∣∣∣
Col

(14)

ih̄
∂

∂ t
p31,k = (ε3,k − ε1,k)p31,k − (−µ21 E(t)p32,k + µ31,k E(t)(n1,k − n3,k) + µ32 E(t)p21,k)

+
∑

k′ �=k

V 1111
|k−k′ |n1,k′ p31,k −

∑

k′ �=k

V 3333
|k−k′ |n3,k′ p31,k

+
∑

k′ �=k

V 2112
|k−k′ | p32,k p21,k′ −

∑

k′ �=k

V 3223
|k−k′ | p21,k p32,k′

−
∑

k′ �=k

V 3113
|k−k′ | p31,k′ n1,k′ +

∑

k′ �=k

V 3113
|k−k′ | p31,k′ n3,k + ih̄

∂p31,k

∂ t

∣∣∣∣
Col
. (15)

The collision terms ∂Ô
∂ t |Col in the above equations describe electron phonon scattering, electron

impurity interactions, etc. Taking these effects into any explicit computation involves
significant complexity. It is sufficient to treat these incoherent scattering terms by introducing
phenomenological decay and dephasing constants to the equations. It is clearly seen from the
equations that Coulomb effects can act as the subband energy renormalization and bleaching
of the peaks in the absorption spectra [24]. These qualitative effects can be explained
at the Hartree–Fock level of our theoretical model. In solving these equations, carrier
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conservation is obeyed. These equations can be solved by the fourth order Runge–Kutta
method.

As stated in the following section, the far-infrared response is related to the polarization
between the upper two subbands ( p32). This polarization can oscillate on the frequency around
the energy splitting of the two subbands. Before any numerical investigation, it is useful to
present an analytical solution to the problem from which we can gain physical insight. First,
we assume that each pulse duration is much shorter than the system response times. So the
optical fields can be described by impulsive functions:

E(t) = E0δ(t) + E0δ(t − T ) cos(�ψ), (16)

where T and�ψ are the delayed time and the shifted phase of the two pulses. Next we assume
that the dephasing time is long enough. The dephasing time can be treated as infinite. Finally,
another important assumption is that the carrier density is very low. The Coulomb effect can be
neglected. This assumption can remove the integral contributions in the semiconductor Bloch
equations presented above. Under these conditions, the equation for p32 can be simplified as

ih̄
∂

∂ t
p32 = ε32 p32 + µ21 E(t)p31 − µ31 E(t)p21. (17)

This is a simple differential equation. Various methods can be applied to solve it. In [14],
perturbation expansions are used to obtain an analytical solution. Here we apply a Fourier
transform in solving the above equations. After some mathematical calculations, the solution
of polarization p32(t) has the following form:

p32(t) = E0

h̄
(µ21 p31(0)− µ31 p21(0))e−iω32 t�(t)

+
E0

h̄
(µ21 p31(T )− µ31 p21(T )) cos(�ψ)e−iω32(t−T )�(t − T ), (18)

where �(t) is the Heavyside step function. The solution of p32 is relevant to the exact value
of p31 and p21 at the moment T . Since the ultrafast optical field is approximated by a delta
function, the time evolution of p32 is not coupled to the time dependent functions— p31(t) and
p21(t). It is obvious that the time evolution of p32 is the interference of two oscillating parts.
The oscillating frequency is just the energy splitting of the upper two subbands (ω32 = E32/h̄).
Whether it is a constructive interference or a destructive one is determined by the delayed time
(T ) and the shifted phase (�ψ). By carefully adjusting the delayed time and shifted phase, we
can get constructive or destructive interference, respectively. In our case, the energy splitting of
the upper two subbands is in the THz range. Schemes of coherent control of THz emission by
adjusting the delayed time and shifted phase of the two optical pulses are expected. A similar
analysis can be made to the time evolution of subband carrier populations and polarizations.

3. Numerical results

The structure of the symmetric quantum well is depicted in figure 1, where a 6.8 nm GaAs
deep well layer with an adjacent 18.6 nm Al0.21Ga0.79As step is sandwiched between thick
Al0.35Ga0.65As barrier layers. An asymmetric potential is needed to break the parity so
that the transition from the ground level to the third subband is permitted. By solving
Schrödinger’s equation and Poisson’s equation self-consistently, the subband eigenenergies
and eigenwavefunctions can be obtained as shown in figure 1. The energy separation between
the second subband and the third subband h̄ω32 is about 12 meV, which is in the THz range. THz
radiation can be emitted by charge oscillation in these two subbands. The energy separation
between the ground subband and the second subband h̄ω21 is at the midinfrared spectrum of
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122 meV. The imposed optical pulse has a central frequency h̄ω0 = (h̄ω21 + h̄ω31)/2. The
pulse electric field is set to be 1 × 106 V m−1. In our simulation, these pulses are set to be
Gaussian envelopes with a duration of 100 fs. Such optical sources are available in practice.
Sources of intense, approximately 50–150 fs, mid-infrared pulses with a tuning capability
from 3 to 20 µm have been reported recently [30]. Pulses of only 120 fs duration are obtained
for longer wavelengths (λ > 8 µm). There are several mechanisms of dephasing, such as
electron–electron interaction, electron–phonon scattering, and scattering by impurities. These
effects can be considered in our simulation either by adding exact interacting terms (such as the
electron interactions in equation (5)) to the total Hamiltonian or by setting phenomenological
decay and dephasing constants in the calculations. The Coulomb interactions are directly
related to the carrier concentration. In our simulation, the total doping density is set to be
1 × 1011 cm−2, which is not high. The main result of choosing this value is to avoid Coulomb
effects on suppression of the THz response. The phenomenological longitudinal lifetimes and
the dephasing times corresponding to the other scattering mechanics are set to be a typical value
of 1 meV [15, 25]. When the semiconductor nanostructure is illuminated by two identical time
delayed and phase shifted pulses, the carrier density in each subband and the intersubband
polarization can be obtained by solving the set of equations of motion within a fourth order
Runge–Kutta algorithm.

From the discussion above, we can see that the carrier density exhibits an oscillation
behaviour as a function of the phase shift between the pulses. The time evolution of subband
populations for different time delay and phase shift conditions has been calculated. The
numerical results are plotted in figure 2. This shows the relation between the upper two
subbands’ population evolution and the two pulses’ phase delay. Figure 2(a) displays the
population of subband 3, and figure 2(b) is the population of subband 2. The beating in
the total light field leads to an oscillatory rise in the subband population. The peak value of
different subband populations appears at phase delay. Thus the selective population of different
subbands can be achieved by adjusting the phase delay conditions. This selective population is
displayed in figure 3 at two specific phase conditions, where one of the subband transitions is
suppressed. By choosing the phase shift�ψ = π +ω21�τ , the spectrum intensity at ω21 will
be zero. The electron population in subband 2 by optical pumping from the ground subband
will be much less than that in subband 3. In contrast, if the phase shift �ψ = π +ω31�τ , the
electron population in subband 3 will be greatly suppressed during the pulse duration. From
figure 3, it can be clearly seen that the three subband system can be treated as if one of the
upper subbands does not exist by adjusting the time delay and phase shift of these two pulses.
This enables us to decouple a selected transition from the neighbouring ones, and, as a result,
achieve any prescribed absolute population in the subband. In a semiclassical picture, this
selective transition can be interpreted as simultaneously coherent construction and destruction
of the carrier densities in different conduction subbands due to pulse interferences. The first
pulse generates the carrier densities of each subband, while the second pulse might produce
constructive or destructive interference with the first one. Whether the carrier densities in the
subband are constructively enhanced or destructively depressed is determined by the phase
shift conditions between these pulses.

After excitation with a short laser pulse, THz radiation can be emitted by the charge
oscillations in the quantum structure [31]. The large bandwidth of the ultrafast pulses allows
the simultaneous phase-coherent excitation of intersubband transitions from the upper two
subbands to the lowest ground subband. The coupling of both intersubband transitions
via their common state in the ground level generates a quantum coherence between the
upper two subbands. This gives rise to quantum beats in the overall polarization oscillating
at the difference frequency [32]. Active control of THz radiation evolution by interband
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Figure 2. Subband population evolution at different phase delay
conditions: (a) represents the population evolution of subband 3 and
(b) represents the population evolution of subband 2. Appearances
of the maximum value of subband population can be coherently
controlled by the phase delay conditions.

coupling phase-locked optical pulses has been theoretically predicted and experimentally
demonstrated [14, 15]. THz radiation signal is also obtained in our numerical results under
the intersubband coupling schemes discussed above. From electromagnetic theories, the THz
radiation electric field is obtained from the second derivative of the induced polarization in the
upper two subbands. The time dependent far-infrared polarization can be written as

PTHz(t) = 2
∑

k

Re(d32,k p32,k(t)). (19)

From the calculated polarization, the radiated THz electric field can be obtained from
ETHz(t) ∝ ∂2 PTHz(t)/∂ t2 [14, 15]. The electric field of the THz signal can be measured
by a photoconducting dipole antenna. The origin of the terahertz radiation is that in an electric
field, a coherent superposition of the upper two subbands leads to charge oscillations in the
well at the subbands’ splitting frequency. We can look at the far-infrared generation process
as a resonant second-order nonlinear optical frequency conversion process in which light at
mid-infrared frequencies within the bandwidth of the laser pulse is mixed to generate the
difference frequency in the far-infrared region. In figure 4, the time dependent far-infrared
polarization is presented. The far-infrared polarization is sensitive to the time delay and phase
shift conditions. Under different selective transition phase conditions, the polarization also
has a phase shift and amplitude variation, as can be seen from figure 4. This can be explained
as the interference of the two THz pulses induced by the time separated ultrafast coupling laser
pulse. Thus the interference of the two pulse excitation can be used not only to control the
subband populations, but also to shift the phase of the emitted THz pulses. From the nonlinear
optics point of view, the emitted THz signal is a resonant difference-frequency mixing process
in the three subbands system. Frequency mixing is induced by the various spectral components
of the ultrafast pulse [15, 33]. This method, which can manipulate electronic transitions by
the relative phase between two light fields, presents us with a powerful tool for the controlling
the operation principles of semiconductor ultrafast optoelectronic devices.
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Figure 3. Selective transition in the asymmetric quantum well with different phase shift conditions.
The temporal evolution of the upper two subband populations is displayed. The Gaussian pulse
has a width of 100 fs, and the time delay between the two pulses is fixed to be 50 fs. The phase
shift conditions are �ψ = π + ω21�τ for the upper panel and �ψ = π + ω31�τ for the lower
panel. As can be seen from the figure, the transition from |1〉 to |2〉 is suppressed in the first case
and the transition from |1〉 to |3〉 is suppressed in the latter case.
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Figure 4. The calculated time dependence of polarization at different selective transition phase
conditions. The spectrum intensity at ω31 is set to be zero in (a) and the spectrum at ω21 is set to
be zero in (b). From the vertical dashed line, the phase shift can be identified.

4. Conclusions

In conclusion, we have demonstrated that it is feasible to control the subband populations and
carrier oscillation in the subbands of a semiconductor nanostructure by two-pulse excitation.
Under different time delay and phase shift conditions the subband population can be selectively
excited. A controllable subband population filling by optical pumping is realized. These
optical excitation can lead to THz radiation from the asymmetric quantum wells. The phase
and amplitude of THz radiation is found to be sensitive to the optical interference of the coupling
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pulses. In our simulation, Coulomb effects under the screened Hartree–Fock approximation
are taken into account. In our results, the THz response is found to be greatly influenced by
Coulomb interactions. When the carrier density is high, electron–electron interactions can be
essential, and these suppress the THz response. Coulomb effects can be avoided by keeping
the concentrations in the sample low enough. These results will be useful for THz sources
produced by optically pumping semiconductor quantum well structures.
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